UNIVERSITY OF NAIROBI

DIGITAL VENDING MACHINE CONTROLLER

PROJECT NO. PRJ043

BY:

BEATRICE MUTHONI MAINA

REG: F17/8248/2004

SUPERVISOR: PROF. ELIJAH MWANGI

EXAMINER: MR. C. OMBURA

This project report is submitted in partial fulfillment of the requirement for the award of the degree of:

Bachelor of Science in Electrical and Electronic Engineering of the University of Nairobi

20th May 2009

Department of Electrical and Information Engineering
DEDICATION

This project is dedicated to my dear parents MR. AND MRS. JOHN MAINA who have constantly supported me throughout my academic life and to my three sisters Sylvia, Linda and Joy, you are all a blessing.
ACKNOWLEDGMENTS

I owe my gratitude to all those who assisted in making this project report possible.

Special mention is given to Prof. Elijah Mwangi, my supervisor, for his constant encouragement, useful and constructive advice and timeless effort in supervising this report.

I would like to also thank my dear friends and classmates Mr. B. Simiyu, Miss Alexia Njambi and Miss Jane Mwelu for your friendship, encouragement and moral support.

I also wish to thank my father, Mr. John Maina and my sister Miss Sylvia Wanjeru for proofreading this report.

Most of all I wish to thank the Almighty God for giving me strength, energy and opportunity to do this report.
ABSTRACT

The design of a logic circuit that can be used in digital vending machine is presented in this report. The digital vending machine controller accepts tokens as payments and dispenses one of the two items on offer as well as change.

The controller is designed using the Algorithm State Machine approach. This has the advantage of partitioning the design into a data processor part and a controller part which produces a modular flow that is easy to implement. In order to reduce the number of inputs a restriction is placed on the types of tokens that can be accepted by the machine.

The machine is implemented with SSI and MSI logic components and simulated using the Electronic Workbench Version 5.1 software. The acceptance of a token is simulated as a digital pulse and the transaction is registered by the use of LEDs. The results obtained are analyzed using an in-built logic analyzer.

The results that have been obtained through the simulator are in agreement with the expected behaviour of the vending machine.
TABLE OF CONTENTS

Dedication
Acknowledgment
Abstract
CHAPTER 1: INTRODUCTION
1.1 Objective
1.2 Finite State Machines (FSM)
1.3 Integrated Circuits
1.4 Sequential Circuits
1.5 Synchronous Sequential Circuits
 1.5.1 Moore Machine
 1.5.2 Mealy Machine
CHAPTER 2: ALGORITHMIC STATE MACHINES (ASM)
2.1 Introduction
 2.1.1 Comparison between ASM chart and State Diagram
2.2 The Algorithm State Machine chart
 2.2.1 The State Box
 2.2.2 The Decision Box
 2.2.3 The Condition Box
2.3 Certain Rules of ASM chart
2.4 Parallel vs. Serial Representation
2.5 Timing Consideration
CHAPTER 3: IMPLEMENTATION
3.1 Introduction
3.2 Problem Specification
 3.2.1 Coin Acceptor Block
CHAPTER 4: RESULTS AND DISCUSSIONS
4.1 Introduction...
4.2 Expected Controller Response
 4.2.1 Case 1 for Mineral Water Select
 4.2.2 Case 2 for Cola Soda Select
4.3 Results
 4.3.1 Waveforms Representing Mineral Water Select
 4.3.2 Waveforms Representing Cola Soda Select
4.4 Discussion

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions
5.2 Recommendations for further work

REFERENCES
LIST OF FIGURES

Fig 1.1 Finite State Machine Modelé é é é é é é é é é é é é é é é é...é 2
Fig 1.2 Block Diagram of Sequential Circuité é é é é é é é é é é é ...é é é ..4
Fig 1.3 Moore type machineé é é é é é é é é é é é é é é é é...é é é 6
Fig 1.4 Mealy type machineé é é é é é é é é é é é é é é é...é é é 6
Fig 2.1 Control and Datapath Interactioné é é é é é é é é é é é ...é é é é é 7
Fig 2.2 State Boxé é é é é é é ...é é é é é é é é é é é é é é 9
Fig 2.3 Decision Boxé é é é é é é é é é é é é é é é é ...é é é é é .10
Fig 2.4 Condition Boxé é é é é é é é é é é é é é é é é ...10
Fig 2.5 Diagram illustrating valid and invalid casesé é é é é ...é ..11
Fig 2.6 Diagram illustrating parallel and serial formé é é é é é ..é ..12
Fig 3.1 Block diagram of Vending Machine Mechanismé é é é é é .13
Fig 3.2 The Coin Acceptor Blocké é é é é é é é é é é é é é é é é .14
Fig 3.3 The Coin Changer Blocké é é é é é é é é é é é é é é é é .15
Fig 3.4 The Item Release Blocké é é é é é é é é é é é é é é é é 16
Fig 3.5 State Diagram of Cola Sodaé é é é é é é é é é é é 20
Fig 3.6 State Diagram of Mineral Wateré é é é é é é é é é é ..é 21
Fig 3.7 ASM chart of Cola Soda and Mineral Wateré é é é é ..é .24
Fig 3.8 Controller Circuité é é é é é é é é é é é é é é é é ..28
Fig 4.1 Waveforms Representing Mineral Water Selecté é é é é ..31
Fig 4.2 Waveforms Representing Cola Soda Selecté é é é é é é ..32

LIST OF TABLES

Table 3.1 State assignment for Cola Soda Selecté é é é é é é é .é 18
Table 3.2 State assignment for Mineral Water Selecté é é é é ...é é 19
Table 3.3 State table for Cola Soda Selecté é é é é é é ...é é é é .26
Table 3.4 State table for Mineral Water Selecté é é é é é .é é é é 27
CHAPTER 1

INTRODUCTION

1.1 Objective
The objective of the project is to design a vending machine controller using the algorithm state machine methodology and the use of small-scale integration (SSI) and medium-scale integration (MSI) logic modules. The machine accepts tokens as payment and dispenses an item as well as change.

1.2 Finite State Machine (FSM)
Finite State Machines (FSM), also known as Finite State Automation (FSA), at their simplest, are models of the behaviour of a system or a complex object, with a limited number of defined conditions or modes, where mode transitions change with circumstances.

Finite state machines consist of 4 main elements:

- states which define behaviour and may produce actions
- state transitions which are movement from one state to another
- rules or conditions which must be met to allow a state transition
- input events which are either externally or internally generated, which may possibly trigger rules and lead to state transitions

A finite state machine must have an initial state which provides a starting point, and a current state which remembers the product of the last state transition. Received input events act as triggers, which cause an evaluation of some kind of the rules that govern the transitions from the current state to other states. The best way to visualize a FSM is to think of it as a flow chart or a directed graph of states. A digital vending machine is an example of a finite state machine. The model of a finite state machine is shown in Fig 1.1;
Fig 1.1: Finite State Machine Model
An FSM can be represented using a state transition diagram. A state transition diagram is a directed graph consisting of nodes to represent states, and the directed lines to represent state transition. Each node is represented with a value of the state it represents and each line is labelled by the input values that cause the transition represented by a line. State diagrams do not capture the algorithms and the timings associated with the transition of the output function. This is a limitation of a sequential circuit using finite state machines methodology, as they do not expressly present the timing information and the algorithms that compute the transition or the output function. This culminates in the algorithmic state diagram, or the ASM chart which is a special flow chart developed specifically to define digital hardware algorithm.

1.3 Integrated Circuits
Digital ICs are often categorized according to their circuit complexity as measured by the number of logic gates in a single package. The differentiation between those chips that have a few internal gates and those having hundreds of thousands of gates is made by a customary reference to a package as being either small-, medium-, large-, or very large-scale integration device.

Small-scale integration (SSI) devices contain several independent gates in a single package. The inputs and outputs of the gates are connected directly to the pins in the package. The number of gates is usually fewer than 10 and is limited by the number of pins available in the IC.

Medium-scale integration (MSI) devices have a complexity of approximately 10 to 1,000 gates in single package. They usually perform specific elementary digital operations.

Large-scale integration (LSI) devices contain thousands of gates in a single package. They include digital systems such as processors, memory chips and programmable logic devices.
Very large-scale integration (VLSI) devices contain hundreds of thousands of gates within a single package. Examples are large memory arrays and microprocessor chips.

1.4 Sequential Circuits
Most systems encountered in practice include storage elements, which require that the system be described in terms of sequential logic. A block diagram of a sequential circuit is shown in Fig 1.2. It consists of a combinational circuit to which storage elements are connected to form a feedback path.

Fig 1.2: Block Diagram of Sequential Circuit
The storage elements are devices capable of storing binary information. The sequential circuit receives binary information from external inputs. These inputs, together with the present state of the storage elements, determine the binary value of the outputs. There are two main types of sequential circuits and their classification depends on the timing of their signals. A synchronous sequential circuit is a system whose behaviour can be defined from the knowledge of its
signals at discrete instants of time. The other type is the asynchronous sequential circuit. Its behaviour depends upon the input signals at any instant of time and the order in which the inputs change.

The basic building block of synchronous sequential logic systems is a flip-flop which is also a binary storage device capable of storing one bit of information.

1.5 Synchronous Sequential Circuits
A synchronous sequential circuit is also referred to as a state machine and the main advantage of synchronous logic is its simplicity. A logic diagram is referred to as clocked sequential circuit if it includes flip-flops with clock inputs.

There are two types of synchronous sequential circuit models;
- Moore machine
- Mealy machine

1.5.1 Moore machine
In a Moore machine the outputs depend only on the present state as shown in Fig.1.3. A combinational logic block maps the inputs and the current state into the necessary flip-flops to store the appropriate next state just like Mealy machine. However, the outputs are computed by a combinational logic block whose inputs are only the flip-flops state outputs. The outputs change synchronously with the state transition triggered by the active clock edge.
1.5.2 Mealy machine
In a mealy machine, the outputs are a function of the present state and the value of
the inputs as shown in Fig. 1.4. Accordingly, the inputs may change
asynchronously in response to any change in the inputs.
CHAPTER 2

ALGORITHMIC STATE MACHINES (ASM)

2.1 Introduction
Binary information stored in a digital system can be classified as either data or control information. The Algorithm State Machine methodology partitions a design into a datapath and control logic. The interaction between the control and datapath is shown in Fig 2.1.

Fig 2.1: Control and Datapath Interaction
Complex design problems such as traffic lights control need a structured approach for visualizing the sequential operations. This is due to the voluminous actions that are required in such situations. This structural approach is similar to an algorithmic approach in handling the arithmetic problems such as addition, subtraction, multiplication or division of numbers.

In the algorithmic approach, we have a well defined procedure which breaks the total operation into a sequence of small steps which generate the results irrespective of the number of times the sequence is generated. Similarly, if the sequential problems which are repetitive in nature and when described verbally have a massive description can be broken down into small steps (states) and can be visualized in the form of a flow-chart that has been developed specifically to define digital hardware algorithm called the Algorithm State Machine chart (ASM chart).

The ASM chart describes the sequence of events as well as the timing relationship between the states of a sequential controller and the events that occur while going from one state to the next.

2.1.1 Comparison between ASM chart and State Diagram
- ASM charts are slightly longer than the state diagram
- State diagrams are compact but difficult to read, that is, sequential operations can be easily described using ASM charts as compared to state diagrams
- Due to its structural approach, the construction of ASM chart for complex systems will be easier than drawing a state diagram.

2.2 The Algorithmic State Machine Chart
The chart is composed of three basic elements:
- The State Box
- The Decision Box
- The Condition Box
2.2.1 The State Box

The state of the system is indicated by the state box. The shape of the state box is a rectangle as shown in Fig 2.2 within which are written register operations or outputs signal names that control generates while being in this state. The state is given by a symbolic name, which is placed the upper left corner. Each state box contains only one entry and one exit path.

![State Box Diagram]

Fig 2.2: State Box

2.2.2 The Decision Box

The *decision box* has a diamond-shaped box with two or more exit paths as shown in Fig 2.3. The stated condition expressed in the decision box is to be tested and the exit path is to be chosen accordingly. One exit path is taken if the condition is true and another when the condition is false.
2.2.3 The Condition Box
The condition box is oval in shape as shown in Fig.2.4. It has one entry path and one exit path. The input path to the condition box must come from one of the exit paths of a decision box. This box is used to represent the register operations or output conditions which are written inside when the control is in that state provided that the input concerned is satisfied.

From exit path of decision box

Register operation or output

Fig 2.4: Condition Box
2.3 ASM chart rules

The drawing of ASM charts must follow certain necessary rules:

- The entrance paths to an ASM block lead to only one state box.
- Of 'N' possible exit paths, for each possible valid input combination, only one exit path can be followed, that is there is only one valid next state.
- No feedback internal to a state box is allowed.

Fig 2.5 indicates valid and invalid cases.

![Diagram illustrating valid and invalid cases](image)

Fig: 2.5: Diagram illustrating valid and invalid cases

2.4 Parallel vs. Serial Representation

We can bend the rules; several internal paths can be active, provided that they lead to a single exit path. Regardless of parallel or serial form, all tests are performed concurrently. Usually we have a preference for the serial form. The following two examples in Fig 2.6 are equivalent.
2.5 Timing Considerations
The timing for all the registers and flip-flops in a digital system is controlled by a master-clock generator. Inputs are also synchronized with the clock because they are normally generated as outputs of another circuit that uses the same clock.

The major difference between a conventional flow chart and an ASM chart is in the time relationship among the various operations. All the operations specified within the ASM chart block must occur in synchronism during the edge transition of the same clock pulse.

Fig 2.6: Diagram illustrating parallel and Serial Form
CHAPTER 3

IMPLEMENTATION

3.1 Introduction
The project involved the design of a vending machine controller that can accept coins as payment tokens and dispense the required item and also give out change. The design employs the algorithmic state machine (ASM) approach. The systems controller is a sequential machine designed to interpret system level control input sequences and in turn generate level output sequences.

3.2 Problem specification
When each coin has been inserted, the controller records the coin value then facilitates the issuance of proper change if necessary and releases the selected item otherwise it would return all the inserted coins when less than the required amount are inserted and there is a delay. The vending machine accepts only Kshs.10 and Kshs.20 coins. The block diagram of the vending machine mechanism is shown in Fig. 3.1. Each block has its features and functions.

![Block Diagram of Vending Machine Mechanism](image-url)

Fig3.1: Block Diagram of Vending Machine Mechanism
3.2.1 Coin Acceptor Block
The coin acceptor has the following features:

- A single slot for the coins to pass through.
- Coin detection for the Kshs.20 and Kshs.10 coins.
- A mechanism that rejects anything other than the Kshs.10 and Kshs.20 coin and faulty coins.
- Coin drop and manual coin release feature.

![Coin Acceptor Block Diagram](image)

Fig 3.2: The Coin Acceptor Block

The coins drop and roll to their respective slots to trigger the coin sensors which outputs pulses according to the value of the coin, that is, a pulse of say 200 milliseconds for the Kshs.10 coin and 400 milliseconds for the Kshs.20 coin.

The *coin drop* is an input that commands the coin acceptor to drop the coins in the collection box. The *coin present* is an output that shows that a coin is present in the coin acceptor and that the denomination has been established. The *display* is an
output that signifies the denomination of the coin present. The clear is an input that will go to 5V for the duration of the depression of the coin release.

3.2.2 Coin Changer Block
It shall have the following features:

- An electromechanical coin ejection system
- Automatic load of 200 Kshs.10 coins reserve

The eject coin is an input that is pulse triggered. The ready is an output status that indicates that it will eject Kshs.10

![Coin Changer Block Diagram]

Fig 3.3: The Coin Changer Block

3.2.3 Item Release Block
It shall have the following features:

- An item release input that is pulse triggered.
- A ready output status that indicates that it will release the selected item
3.3 Systems Development

The vending machine controller is designed to deliver the following two items;

i. Mineral Water at the cost of Kshs.40

ii. Cola Soda at the cost of Kshs.30

The item to be purchased is selected by the customer. The customer will insert coins to the coin acceptor with coin sensors that detect the denomination and the number of coins inserted. The vending machine delivers the selected item and returns proper change if necessary.

For the first case when the mineral water is selected, it delivers the item after Kshs.40 has been inserted and when more than this value is deposited, it delivers the mineral water and the change. When the amount of money deposited is less than Kshs.40, a delay time of 5 seconds is allowed, if no further deposit is made within this time, the amount deposited is rejected and returned as change and no item is dispensed.

For the second case when the cola soda is selected, it delivers the item after Kshs.30 has been inserted. When more than this value is deposited, it delivers the item
and the change. However, if less than the Kshs.30 is inserted and a delay of 5 seconds is allowed and no more deposit is made, the amount deposited is returned as change and no item is dispensed.

3.3.1 Definition of States for Cola Soda
For the mineral water which costs Kshs.30, the states after each deposition are,

- S0 state equivalent to Kshs.0
- S1 state equivalent to Kshs.10
- S2 state equivalent to Kshs.20
- S3 state equivalent to Kshs.30
- S4 state equivalent to Kshs.40

3.3.2 Reduction of States for Cola Soda Select
The item will be dispensed only if Kshs. 30 or more is deposited. This is in states S3 and S4. The controller will be reset at these states to serve the next customer, for the reset purposes the coin receiver should contain no money, hence the controller should be at state S0. Hence, when the cola soda is released it is time to reset the controller. The states S3 and S4 are equivalent to S0 but the output is different in each case.

The states are reduced and the distinct states are obtained as follows;

- S0 which is equivalent to states S3 and S4
- S1 state that is equivalent to Kshs.10
- S2 state that is equivalent to Kshs.20

The possible outputs are cola soda dispensed or cola soda dispensed with change.
3.3.3 State Assignment
Table 3.1: State assignment for cola soda

<table>
<thead>
<tr>
<th>STATE SYMBOL</th>
<th>BINARY CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>00</td>
</tr>
<tr>
<td>S1</td>
<td>01</td>
</tr>
<tr>
<td>S2</td>
<td>10</td>
</tr>
</tbody>
</table>

3.3.4 Definition of states for Mineral Water
- S0 state equivalent to Kshs.0
- S1 state equivalent to Kshs.10
- S2 state equivalent to Kshs.20
- S3 state equivalent to Kshs.30
- S4 state equivalent to Kshs.40
- S5 state equivalent to Kshs.50

3.3.5 Reduction of States for the Mineral Water
The item will be dispensed only if Kshs.40 or more is deposited. This is in state S4 and S5, the controller is reset at these states to serve the same customer. Hence states S4 and S5 are equivalent to S0, but the output is different in each case.

The states are reduced and the distinct states are obtained as follows:
- S0 which is equivalent to states S4 and S5
- S1 state equivalent to Kshs.10
- S2 state equivalent to Kshs.20
- S3 state equivalent to Kshs.30

The possible outputs are mineral water dispensed or mineral water dispensed with proper change.
3.3.6 State Assignment
Table 3.2: State Assignment for mineral water

<table>
<thead>
<tr>
<th>STATE SYMBOL</th>
<th>BINARY CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>00</td>
</tr>
<tr>
<td>S1</td>
<td>01</td>
</tr>
<tr>
<td>S2</td>
<td>10</td>
</tr>
<tr>
<td>S3</td>
<td>11</td>
</tr>
</tbody>
</table>

3.3.7 The State Diagram
The inputs which are tokens and the outputs which are either item and proper change can be represented in the state diagram. When the amount deposited is less than the cost of the item, the machine rejects the item if a delay of 5 seconds is realized. Hence delay forms part of the inputs.

The control inputs are represented as follows:
- A to represent Kshs.10
- B to represent Kshs.20
- D to represent the 5 second delay

The outputs are represented as follows:
- X for dispensing or no dispensing of the item
- Y for change or no change of Kshs.10
- Z for change or no change of Kshs.20

The logic values of the external inputs and external output are shown beside the transition arrows in the state diagram. The directed lines from one state to another indicate the inputs and the outputs which are path conditions and the transfer functions respectively.

The state diagrams for the cola soda and mineral water are shown in Fig.3.5 and Fig.3.6 respectively.
Fig 3.5: State Diagram of Cola Soda
Fig 3.6: State Diagram of Mineral Water
3.3.8 The Algorithmic State Machine (ASM) Chart

The ASM chart is a type of flow chart describing the sequential operations of a digital system. It is composed of the state box, the condition box and the decision box. The ASM chart is very similar to the state transition diagram with each state box representing a state. The control logic is determined by the decision boxes and the required transitions. The requirements for the design of the data path are specified inside the conditional boxes. At the first state, S0 when the controller is reset, the customer will either choose the cola soda or the mineral water. Each decision box represents the three possible controller inputs and the exit paths depend on whether the condition is true or false. The condition boxes represent the three possible outputs of the controller. The ASM chart of the cola soda and the mineral water are shown in Fig. 3.7.

State S0 represents the reset state of the controller. When the cola soda, which costs Kshs. 30, is selected there are three conditions which will be tested, that is, the delay (D), the Kshs.10 input (A) and the Kshs. 20(B) input. When there is a delay at this state, no item or change will be dispensed hence the controller resets. If there is a Kshs 10 input (represented by A), the controller will move to the second state, that is S1, but if there is a Kshs.20 input (represented by B) the controller moves to the third state, S2.

At the second state S1, the same three input conditions A, B and D are tested. At this state, if there is a Kshs 10 input (represented by A) the controller will move to the third state S2. If there is a Kshs 20 input the controller will dispense the item and reset because the required amount of Kshs.30 has been input. If there is a delay at this state Kshs. 10 change is dispensed and the controller resets.

At the third state S2, the three inputs conditions A, B and D are tested. At this state, if there is Kshs 10 input (represented by A) the item will be dispensed and controller reset because the required amount of Kshs.30 has been input. If there is a Kshs.20 input (represented by B) the item and change of Kshs 10 will be
dispensed because an amount of Kshs.40 has been input. If there is a delay at this state change of Kshs. 20 will be dispensed and the machine reset.

When the mineral water, which costs Kshs. 40, is selected there are three conditions which will be tested, that is, the delay (D), the Kshs.10 input (A) and the Kshs 20 input (B). When there is a delay at this first state S0, no item will be dispensed and no change will be dispensed hence the controller resets. If there is a Kshs 10 input (represented by A), the controller will move to the second state, that is S1, but if there is a Kshs.20 input (represented by B) the controller moves to the third state, S2.

At the second state S1, the same three input conditions A, B and D are tested. At this state, if there is a Kshs 10 input (represented by A) the controller will move to the third state S2. If there is a Kshs. 20 input the controller moves to the fourth state, S3. If there is a delay at this state Kshs. 10 change is dispensed and the controller resets.

At the third state S2, the inputs conditions A, B and D are tested. If there is a Kshs. 10 input (represented by A), the controller will move to the fourth state, S3. If there is a Kshs 20 input (represented by B), the item will be dispensed and the controller reset because the required amount of Kshs. 40 has been input. If there is a delay at this state Kshs. 20 change is dispensed and the controller resets.

At the fourth state S3, if there is a Kshs. 10 input, the item will be dispensed and the controller reset because the required amount of Kshs. 40 has been input. If there is a Kshs. 20 input, the item and change of Kshs 10 will be dispensed and the machine will be reset. If there is a delay at this state, Kshs 30 change is dispensed and the controller resets.
Fig 3.7: ASM chart of cola soda and water
3.3.9 The State Table
The state table is derived from the state diagram. A state table for a controller is a list of present states and their inputs and the corresponding next state and outputs. The inputs are taken from the decision boxes and the outputs are taken from the condition boxes in the ASM chart.

3.4 Design with Multiplexers

Combinational circuit can be implemented with multiplexers instead of individual gates. Replacing the gates results in a regular pattern of three levels of components. The first level consists of multiplexers that determine the next state of the register. The second level contains a register that holds the present binary state. The third level has a decoder that provides a separate output for each control state. These three components are predefined standard cells in many integrated circuits.

The level control implementation consists of two multiplexers, two registers, each with two flip-flops and two decoders. The outputs of the register are applied to the decoder inputs and also the select inputs of the multiplexers. In this way the present state of the register is used to select one of the D inputs of each corresponding flip-flop. The inputs of the multiplexers are determined from the decision boxes given in the ASM chart and these inputs are used in the control implementation. A switch is used to select which item the customer wants. The delay input is derived from the D flip-flops which are delay components. The multiplexer inputs are derived from the present states and the next state and the expected input conditions.

The state table for both items and the multiplexer inputs are shown in table 3.3 and 3.4.
Table 3.3: State table for Cola Soda select

<table>
<thead>
<tr>
<th>STATE SYMBOL</th>
<th>PRESENT STATES G3 G4</th>
<th>INPUTS D A B</th>
<th>NEXT STATE G3 G4</th>
<th>OUTPUTS X Y Z</th>
<th>MULTIPLIER INPUTS MUX3 MUX4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO</td>
<td>00</td>
<td>1 0 0</td>
<td>00</td>
<td>0 0 0</td>
<td>B A</td>
</tr>
<tr>
<td></td>
<td>00</td>
<td>0 1 0</td>
<td>01</td>
<td>0 1 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00</td>
<td>0 0 1</td>
<td>1 0</td>
<td>0 0 1</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>01</td>
<td>1 0 0</td>
<td>00</td>
<td>0 1 0</td>
<td>A 0</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>0 1 0</td>
<td>1 0</td>
<td>0 0 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>0 0 1</td>
<td>0 0</td>
<td>1 0 0</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>1 0</td>
<td>1 0 0</td>
<td>0 0</td>
<td>0 0 1</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>1 0</td>
<td>0 1 0</td>
<td>0 0</td>
<td>1 0 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 0</td>
<td>0 0 1</td>
<td>0 0</td>
<td>1 0 1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.4: State table for Mineral Water select

<table>
<thead>
<tr>
<th>STATE SYMBOL</th>
<th>PRESENT STATES</th>
<th>INPUTS</th>
<th>NEXT STATE</th>
<th>OUTPUTS</th>
<th>MULTIPLEXER INPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1 G0</td>
<td>D A B</td>
<td>G1 G0</td>
<td>X Y G</td>
<td>MUX 1</td>
</tr>
<tr>
<td>S0</td>
<td>0 0</td>
<td>1 0 0</td>
<td>0 1</td>
<td>0 0 0</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>0 0</td>
<td>0 1 0</td>
<td>0 1</td>
<td>0 1 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0</td>
<td>0 0 1</td>
<td>1 0</td>
<td>0 0 1</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>0 1</td>
<td>1 0 0</td>
<td>0 0</td>
<td>0 1 0</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>0 1</td>
<td>0 1 0</td>
<td>1 0</td>
<td>0 0 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1</td>
<td>0 1 0</td>
<td>1 1</td>
<td>0 1 1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>1 0</td>
<td>1 0 0</td>
<td>0 0</td>
<td>0 0 1</td>
<td>AB</td>
</tr>
<tr>
<td></td>
<td>1 0</td>
<td>0 1 0</td>
<td>1 1</td>
<td>0 0 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 0</td>
<td>0 0 1</td>
<td>0 0</td>
<td>0 1 1</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>1 1</td>
<td>1 0 0</td>
<td>0 0</td>
<td>0 1 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1</td>
<td>0 1 0</td>
<td>0 0</td>
<td>1 0 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1 1</td>
<td>0 0 1</td>
<td>0 0</td>
<td>1 1 0</td>
<td></td>
</tr>
</tbody>
</table>
Fig 3.8: Controller Circuit
CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction
The simulation software used to obtain the results was the Electronics Workbench Version 5.1. The results obtained have been discussed in this chapter.
The inputs of the controller are connected through the word generator. The word generator is used to send digital words or pattern of bits in the circuits to test them. It can drive a digital circuit by producing streams of 16-bit words. Each word in the scroll window has an address expressed as a 4-character hexadecimal number. The probes are used as logic displays for the inputs, the item to be selected and the outputs. The logic analyzer is used to display the waveforms during simulation for analysis. A clock of 5 hertz frequency and 50% duty cycle has been used.

4.2 Expected Controller Response
The controller system receives coins and displays outputs accordingly. The input signals were square pulses respective to the amount of money inserted, that is, the Kshs. 20 coin is represented by a pulse of 400 milliseconds and the Kshs. 10 coin is represented by a pulse of 200 milliseconds.

4.2.1 Case 1 for Mineral Water Select
The item costs Kshs 40 and when the total sum equals to the required amount, a pulse is generated that dispenses the item and resets the controller. The item was dispensed when one pulse representing Kshs 20 and two pulses representing Kshs 10 are generated.
When less this amount is generated, the controller generates a pulse which represents that change has been dispensed.
4.2.2 Case 2 for Cola Soda Select

When the total sum equals to the required sum, that is Kshs 30 or more, a pulse is generated that dispenses the item, dispenses change if necessary and resets the controller.

In summary the time delay causes the coins that are input to be rejected if it is less than the amount needed to release the item.

4.3 Results

4.3.1 Waveforms Representing Mineral Water Select

The waveforms show that the item is dispensed only after the required amount is input, that is, a pulse that dispenses the item is generated when one pulse representing Kshs. 20 and two pulses representing Kshs. 10 are generated. In the case where less this amount is input, the controller dispenses the required change and resets. The waveforms are shown in Fig. 4.1.

4.3.2 Waveforms representing Cola Soda Select

The waveforms show that a pulse that dispensed the item was generated when the amount input was Kshs. 30 or more. In the case where less the required amount is input, the controller dispenses the required change and resets. The waveforms are shown in Fig 4.2.

4.4 Discussion

The behaviour of the controller agrees with the expected theoretical results. For example, when the cola soda was selected, the item is dispensed only after an amount of Kshs. 30 or more is input and when less this amount is input, the required change is dispensed. Similarly, when the mineral water is selected the item is dispensed only after an amount of Kshs. 40 is input and when less this amount is input, necessary change is given.
Fig 4.1: Waveforms representing Mineral Water select
Fig 4.2: Waveforms representing Cola-Soda Select
CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusions
The algorithmic state machine methodology is used in the design of the vending machine controller and it proves to be important because sequential operations are easily described due to its structural approach. The method therefore was simple, clear and easy to use. The main aim of the control logic which uses multiplexers, registers and decoders, being to design a circuit that implements the desired control sequence in simple manner, therefore the design proves effective. The results obtained agree with the theoretical expectations. However in an actual circuit results would be affected by noise because many digital circuits are quite sensitive to errors occurring from noise. A noise spike can reverse the polarity of a digital pulse and therefore create logic change transitions when they should not occur. This can cause triggering and synchronization problems in the circuit. Noise spikes whether stray glitches or frequent occurrences most often get into the circuit through the power supply. A good power line filter or a surge suppressor often will clear up noise related problems. Internal circuit filtering is also helpful.

5.2 Recommendations for further work
A digital vending machine controller design problem can be better solved by a micro-processor based controller. This is useful when the number of items that can be dispensed is large or when the dispensed item has to be measured, say in volume, for example coffee machine dispenser. However using the micro-processor-based controller may not offer the best option based on lower cost considerations. The major requirements however are efficiency and practicability of the controller.
REFERENCES

1. M. MORRIS MANO, *DIGITAL DESIGN*
 THIRD EDITION, PRENTICE-HALL INC, 2002

2. MARK ZWOLINSKI, *DIGITAL DESIGN SYSTEM WITH VHDL*
 PRENTICE-HALL INC, 2003

